Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray
نویسندگان
چکیده
The dorsal (DH) and ventral (VH) subregions of the hippocampus are involved in contextual fear conditioning. However, it is still unknown whether these two brain areas also play a role in defensive behavior induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into the dPAG to determine freezing and escape response thresholds after sham or bilateral electrolytic lesions of the DH or VH. The duration of freezing behavior that outlasted electrical stimulation of the dPAG was also measured. The next day, these animals were subjected to contextual fear conditioning using footshock as an unconditioned stimulus. Electrolytic lesions of the DH and VH impaired contextual fear conditioning. Only VH lesions disrupted conditioned freezing immediately after footshock and increased the thresholds of aversive freezing and escape responses to dPAG electrical stimulation. Neither DH nor VH lesions disrupted post-dPAG stimulation freezing. These results indicate that the VH but not DH plays an important role in aversively defensive behavior induced by dPAG electrical stimulation. Interpretations of these findings should be made with caution because of the fact that a non-fiber-sparing lesion method was employed.
منابع مشابه
Role of amygdala in conditioned and unconditioned fear generated in the periaqueductal gray.
The amygdala and ventral portion of the periaqueductal gray (vPAG) are crucial for the expression of the contextual freezing behavior. However, it is still unclear whether the amygdala also plays a role in defensive behaviors induced by electrical stimulation of the dorsal periaqueductal gray (dPAG). In the present study, rats were implanted with electrodes into dPAG for determination of the th...
متن کاملLesion of the ventral periaqueductal gray reduces conditioned fear but does not change freezing induced by stimulation of the dorsal periaqueductal gray.
Previously-reported evidence showed that freezing to a context previously associated with footshock is impaired by lesion of the ventral periaqueductal gray (vPAG). It has also been shown that stepwise increase in the intensity of the electrical stimulation of the dorsal periaqueductal gray (dPAG) produces alertness, then freezing, and finally escape. These aversive responses are mimicked by mi...
متن کاملContext fear conditioning inhibits panic-like behavior elicited by electrical stimulation of dorsal periaqueductal gray.
Context fear conditioning has been widely used as an animal model of anxiety whereas electrical stimulation of the dorsal portion of the periaqueductal gray (DPAG) as a model of panic attack. The present study employed these two animal models in order to investigate the influence of anxiety in the occurrence of panic attack. Results indicated that animals exposed to contextual cues that were pr...
متن کاملInvolvement of midbrain tectum neurokinin-mediated mechanisms in fear and anxiety
Electrical stimulation of midbrain tectum structures, particularly the dorsal periaqueductal gray (dPAG) and inferior colliculus (IC), produces defensive responses, such as freezing and escape behavior. Freezing also ensues after termination of dPAG stimulation (post-stimulation freezing). These defensive reaction responses are critically mediated by γ-aminobutyric acid and 5-hydroxytryptamine ...
متن کاملFos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
Electrical stimulation of the dorsal regions of the periaqueductal gray (PAG) leads to defensive reactions characterized as freezing and escape responses. Until recently it was thought that this freezing behavior could be due to the recruitment of neural circuits in the ventrolateral periaqueductal gray (vlPAG), while escape would be mediated by other pathways. Nowadays, this view has been chan...
متن کامل